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Abstract. We develop an interpretation of the off-equilibrium dynamical solution of mean-field
glassy models in terms of quasi-equilibrium concepts. We show that the relaxation of the ‘thermo-
remanent magnetization’ follows a generalized version of the Onsager regression postulate of
induced fluctuations. We then find the rationale for the equality between thefluctuation–dissipation
ratio and the rate of growth of the configurational entropy close to the asymptotic state, found
empirically in mean-field solutions.

1. Introduction

Ageing is a scaling dynamical regime characteristic of glassy systems [1]†. In this regime,
typical features of equilibrium systems, such as the asymptotic absence of macroscopic heat
currents, coexist with non-stationary aspects such as the dependence of the correlation and
response functions on the system’s ‘age’, i.e. the time spent in the low-temperature phase.
The solution of mean-field spin-glass models [2–5]‡ has given a general framework to
understand ageing phenomena, and has produced detailed predictions, which have been verified
in numerical simulations of long- [6] and short-range [7] glassy systems. A characteristic
prediction of this solution is the existence, at low temperature, of a dynamical regime where
extensive quantities depending on the configuration of the system at a single time (one-time
observables in the following) are well thermalized (or evolve very slowly), while two-time
correlation functions and susceptibilities exhibit non-stationary scale-invariant behaviour.

Despite this coherent theoretical scheme, and recent progress in linking ageing dynamics
to the nature of the equilibrium regime [8], a physical understanding of some fundamental
aspects of ageing dynamics is still lacking. While the investigation of both equilibrium and
asymptotic off-equilibrium regimes give solutions that show unexpected coincidences, all ef-
forts to interpret ageing as a quasi-equilibrium condition have been thwarted by facts such
as:

(a) No matter how large we take the ageing time, if we then wait long enough the system
eventually wanders away from any finite region of phase space [2].

(b) Two identical systems starting from the same condition at any given ageing time will
always come apart as far as possible [9].

† For a recent review on ageing in spin-glass materials see [1] (second reference).
‡ For a recent review on ageing mean-field theory see [5].
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In this paper we try to make ends meet. In particular, we try to give a physical and intuitive
explanation of the link between the so-called ‘fluctuation–dissipation ratio’ (FDR) (the factor
x(q)) and the Parisi function (in Sherrington–Kirkpartick-like models) or the derivative of
the configurational entropy close to the threshold state (inp-spin-like models). Our work
should be understood as a physical interpretation of mean-field ageing dynamics in terms
of a quasi-equilibrium scenario and not as an alternative derivation of the results of the
theory.

We show that a modified version of the Onsager postulate on regression of fluctuations
applies to the relaxation of the magnetization in thermo-remanent magnetization experiments.
The observed anomalies in the response are then analysed. In this paper we discuss ageing
mainly in the case of a ‘one-time-sector’ approximation, which is the dynamical counterpart of
the ‘one-step replica symmetry breaking’ (1RSB) approximation in the equilibrium analysis.
This is exact in models like thep-spin model, while it is only an approximation, and a rather
crude one, when continuous replica symmetry breaking is present, like in the Sherrington–
Kirkpatrick (SK) model or the random manifold model. We will refer to the first class of
models as ‘p-spin-like’ and to the second as ‘SK-like’. We discuss only this ‘one-time-sector’
approximation to unify the argument, and simplify the notation. However, we expect the reader
to be able to generalize it without effort.

The picture that emerges from our analysis is simple and intuitive: the age of an ageing
system determines the rate of entropy decrease, i.e. the flow rate of heat towards the thermal
bath. A small force in the linear response regime cannot change this rate. Acquiring a non-zero
magnetization means entropy reduction which has then to be compensated by an increase (or
reduced decrease) of the free energy associated with the spin-couplings. As a consequence,
the response becomes proportional to the growth of the logarithm of the number ofquasi-
states(to be defined later) with free energy. It is as if the slow degrees of freedom respond
to external forces by sampling states that lie above in free energy, while they are blocked
from exploring those that are at the same or at a lower level. This paper presents what we
believe are convincing arguments in favour of this assertion. As a by-product the time-scale-
dependent effective temperatures will appear [10] and their connection with the derivative of
the logarithm of the number of quasi-states (or configurational entropy) with respect to free
energy is explained [11]†.

We organize this paper as follows. In section 2 we review some properties of ageing in
a mean-field model. In section 3 we discuss our definition of quasi-equilibrium and how it
relates to the dynamics. In section 4 we recall the Onsager regression postulate and generalize
it to ageing systems. In section 5 we discuss the origin of the FDR in SK-like models, while
we treat the case ofp-spin-like models in section 6. Finally, we present a summary and the
conclusions.

2. A short review

We consider a mean-field spin-glass quenched at a given timet = 0 into the glassy phase.
For simplicity we will imagine that the degrees of freedom consist of Ising spinsSi = ±1,
i = 1, . . . , N (N → ∞). We are interested on the long-time dynamics of such a system,

† The relation between the Parisi parameterβx and the derivative of the cluster entropies with respect to the cluster
free-energies in equilibrium theory was well known (see the first reference of [11]). That the factorβx appearing in
mean-field dynamics in thep-spin model is the derivative of the configurational entropy with respect to free energy
was noticed soon after the Kurchan–Cugliandolo paper (see [12]). This observation is at the origin of an ambitious
program to introduce a multi-temperature thermodynamics for the glassy state (see [13] and references therein).
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i.e. on a regime where it has thermalized for a long timetw before any measurements. The
long-time limit tw →∞ is always taken after the thermodynamic limit.

The free energy, and its derivatives with respect to the control parameters (e.g.
temperature), tend to some asymptotic time-independent values. More interesting is the
behaviour of observables depending on two time variables, such as correlation and response
functions. Ageing behaviour manifests itself as an asymptotic non-stationary dependence on
time of these quantities.

Let us consider the spin–spin time-dependent autocorrelation function

C(t, u) = 1

N

N∑
i=1

Si(t) Si(u) t > u� tw. (1)

A first, short-time, dynamical regime is obtained by considering the differenceτ = t − u
finite to derive stationary correlationsC∗st (τ ). Let us denoteqEA as the long-τ limit of C∗st . In
the ageing regimeC(t, u) relaxes belowqEA. In the ‘one-time-sector’ approximation scheme,
the correlation function in this regime can be written as [2],

C(t, u) = Cag(h(u)/h(t)) (2)

whereh(·) is an increasing function not derivable from the present theory andt, u are large
with lim t,u→∞ h(u)/h(t) = finite. The formulae in the two regimes are summarized in:

C(t, u) = Cst (t − u) +Cag(h(u)/h(t)) (3)

whereCst (t −u) = C∗st (t −u)− qEA is a monotonically decreasing function equal to 1− qEA
for t − u = 0 and tending to zero fort − u → ∞, while Cag(h(u)/h(t)) is equal toqEA
for h(u)/h(t) = 1 (u = t) and tends toq0 for h(u)/h(t) → 0. In order to simplify the
notation we will suppose that the ‘time reparametrization’h(t) is the identityh(t) = t and
Cag(h(u)/h(t)) = Cag(u/t). We will also suppose thatq0 = 0, but this will not affect any of
our following arguments.

We stress that the form (3) of the correlation function implies that if we fix the value of
u and lett run, the time spent at the value of the correlation equal toqEA is much larger then
the time needed to reach it. This is an aspect of the ‘time-scale separation’ observed in glassy
systems that will play a crucial role in our discussion.

We are also interested in the behaviour of the linear response function,

R(t, u) = 1

N

N∑
i=1

δ

δhi(u)
〈Si(t)〉|h=0 t > u� tw (4)

and the corresponding integrated function

χ(t, u) =
∫ u

tw

ds R(t, s) t > u� tw (5)

which represent the susceptibility at timet in a ‘thermo-remanent magnetization’ experiment
in which a constant small field has acted from the timetw up to timeu. By the condition
u � tw we meantw/u → 0 for tw → ∞. The linear response theory requires that the limit
h→ 0 be takenbeforesending the timeu to infinity.

While in the stationary regime the fluctuation–dissipation relationR(t, s) = Rst (t − s) =
β ∂C(t, s)/∂s is verified, in the ageing regime the relation is substituted by having a non-trivial
fluctuation–dissipation ratio:

x(q) = lim
t,s→∞
C(t,s)=q

T R(t, s)

∂C(t, s)/∂s
(6)
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which turns out to coincide with the functionx(q) appearing in the replica approach that in
principle applies to equilibrium of different kinds [14, 15]. In the one-sector scenariox(q) is
constant throughout the ageing regime.

The FDRx(q)verifies the mathematical properties of a cumulative probability distribution,
a feature that has been explained in recent work where it has been shown that there is a deep
connection between the dynamic properties during ageing and the property of ergodicity-
breaking in equilibrium [8]. Using only the hypothesis of equilibration of one-time observables
(OTO) and the existence of a linear response regime for the correlation functions (stochastic
stability), it was proved that the functionx(q) is related to the functionP(q) describing the
statistics of equilibrium pure states [16] through the equation

P(q) = dx(q)

dq
. (7)

The theorem was originally formulated for finite-dimensional systems, where the OTOs
are guaranteed to thermalize but can be generalized to mean-field long-range models of the
SK-like class. A different situation is found inp-spin-like models [17]† where one of the
hypotheses of the theorem is violated because the asymptotic value of the dynamic energy is
higher than that of the states dominating the partition function.

3. The quasi-equilibrium hypothesis

From now on we will work on the ‘one-time-sector’ approximation described in the previous
section.

Let us consider a large timeuand the corresponding spin configurationSi(u). Our previous
observations suggest that the value ofqEA can be used to decompose the spin configuration
into a ‘fast part’ and a ‘slow part’ according to

Si(u) = [Si(u)−mi(u)] + mi(u) (8)

where the slow variablemi(u) can be estimated immediately from the running average

mi(u) ' 1

1t

∫ u+1t

u

dw Si(w) with C(u +1t, u) = qEA. (9)

We will see later how to improve on this estimate. From (8) and (9) we obtain correctly the
corresponding decomposition of the correlation function into two time domains

〈[Si(t)−mi(t)][Si(u)−mi(u)]〉 = Cst (t − u) (10)

while

〈mi(t)mi(u)〉 = Cag(u/t). (11)

Any other decomposition, obtained by averaging the spins over times such that the value of
C(u, v) is different fromqEA, would mixCst andCag.

Through this decomposition one can define a dynamical notion of ‘quasi-state’ in which
the system (almost) equilibrates before relaxing further. The quasi-equilibrium hypothesis
can be formulated by considering the probability distribution of finding the system in a given

† A review on the sphericalp-spin model can be found in [17] (first reference). The model was first introduced in
[17] (second reference).
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configuration of the slow and the fast variables at timet induced by the thermal noise and the
flat distribution of initial conditions

Pt({Si}, {mi}) =
〈∏

i

δ(Si(t)− Si)δ(mi(t)−mi)
〉

thermal noise
initial conditions

(12)

which can be written as

Pt({Si}, {mi}) = Pt({Si}|{mi}))Pt ({mi})). (13)

All the known properties of the dynamical solution, and in particular the short-time response
to external perturbations, are consistent with the proposition that the conditional probability
Pt({Si}|{mi}) becomes independent of time, and takes asymptotically the form of a restricted
Boltzmann measure†:

P({Si}|{mi}) =
e−βH({Si })δ

(∑
i Simi −NqEA

)∑
{Si } e

−βH({Si })δ
(∑

i Simi −NqEA
) . (14)

We stress that the same property manifestly would not hold had we chosen time scales such
thatC(t, u) < qEA in the average (9). This proposition is implicit in the definition of the
ageing regime, where there is no ambiguity in the definition ofqEA. The measure should be
restricted to the transverse configuration space projecting out those directions along which
the system evolves (transversequasi-states) where the energy landscape is flat or has negative
eigenvalues. In these conditions, the free energy of the quasi-state (see below), as well as the
value ofqEA entering in (14) are close to their asymptotic values, but still depend on time.
We can safely assume that in the asymptotic regime the number of negative directions become
vanishingly small. Note that, if we take two macroscopically different sets of slow variables
{mi} and{m′i} then, by construction, the corresponding conditional probabilitiesP({Si}|{mi})
andP({Si}|{m′i}) are mutually orthogonal. This can be easily understood from the fact that
the mutual overlap among a configuration with non-zero weight in the first distribution and a
configuration with non-zero weight in the second one is almost surely smaller thenqEA. It is
therefore convenient to think of a discretizedmi-sphere such that the centres of the neighbouring
cells correspond to disjoint quasi-states. In general, we expect different quasi-states to define
disjoint regions in configuration space and that the union of all such regions define a partition
of all relevant configurations. We will useα as the index of the quasi-state which of course
will change with the slow time. In (9) thereforemi(u) should rather readmαi with α a function
of u. The finiteness of1t limits the accuracy of the running average estimate. To derive a
better estimate ofmαi we could clone the trajectory from timeu on and take a weighted average
along all trajectories.

It is useful to define thermodynamic quantities such as the dynamical free energy,

Ft =
∑
α

Pt ({mαi })
[
F({mαi }) + T log

(
Pt({mαi })

)]
(15)

whereT is the temperature of the thermal bath and

F({mαi }) =
∫ ∏

i

dSi P ({Si}|{mαi })
[
H({Si}) + T log

(
P({Si}|{mαi })

)]
(16)

is the free energy of the (transverse)α quasi-state.

† To be more precise we should define the measure in such a way that eachSi has averagemi . One can check with a
detailed calculation that this condition is automatically fulfilled by the measure (14).
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Observe thatFt includes the average free energy of the quasi-states

Ft =
∑
α

Pt ({mαi }) F ({mαi }) (17)

and a slow entropy term

St = −
∑
α

Pt ({mαi }) log
(
Pt({mαi })

)
. (18)

An explicit computation shows that, due to the disjointness property of the quasi-states,
the sumSt + St coincides with the entropy of the distributionPt({Si}). We can identifyFt
with the dynamical free energy

∫ ∏
i dSi Pt ({Si})[H({Si}) + T logPt({Si})].

This last quantity is known to decrease in any process verifying detailed balance. In our
case, due to the white average over the initial conditions we expect, in addition, bothFt and
St to decrease with time.

For typical trajectories extensive quantities are self-averaging and therefore the free energy
Ft is a well defined function. The asymptotic value,F∞, is the free energy of the equilibrium
state for SK-like systems, and the free energy of the threshold Thouless–Anderson–Palmer
(TAP) solutions for thep-spin class.

The role ofSt in the dynamical relaxation is not immediately obvious. By construction,
it does not say anything about the number of quasi-states accessible starting from a generic
point of a trajectory at timet . In fact, we expect that the support ofPt({mi}) decomposes in
non-overlapping, mutually inaccessible, regions of phase space that become more and more
isolated as time advances.

By inverting the relationFt among free energy and time, we can defineS(F ) = St (F )
and derive thatS(F∞) is the extensive part of the configurational entropy of ground states in
SK-like models (zero in this case) and the configurational entropy of the threshold states in
thep-spin. Thedynamicalentropy that we have defined weights different regions of phase
space according to their basins of attraction. Here we are using the observation that since
the threshold states are identical in all their properties, they must also have the same basin
of attraction. Furthermore, with respect to those states which appear in exponentially smaller
numbers there is the additional observation that their basin of attraction cannot be so much
larger as to compensate for their smaller multiplicity.

For large time, the support ofPt({mi}) will be in regions of small TAP gradient. We can
calculateS(F ):

St = S(Ft ) = ∂S(F )
∂F

∣∣∣∣
F∞
(Ft − F∞) + S∞. (19)

In our scenarioS(Ft ) measures the multiplicity of quasi-states att which as before will
have equal basins of attraction. A detailed calculation in thep-spin model is developed in
the appendix. It shows that if we compute the multiplicity of minima of the modulus of the
gradient of the TAP free energy then their number and derivative are continuous across the
threshold value. Therefore, we propose to identifythe quasi-states with the minima of the
gradient of the TAP free energy. For SK-like models we conjecture insteadS(F ) to be equal
to the number of stable TAP excites states at levelF .

With this identification we now write(∂S(F )/∂F )|F∞ equal toβx. It is one of those
remarkable coincidences, referred to in the introduction, that the same value ofx appears in
the anomalous FDR. We will interpret this coincidence in the following sections.

This identification of the quasi-states is crucial. An explicit calculation of the dynamical
entropy could check its validity but unfortunately with our present techniques such a calculation
is not feasible.
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A strong hint in favour of it comes, however, from the study of the equilibrium dynamics
of p-spin-like models at temperatures slightly larger then the dynamical transition temperature
Td . ForT − Td � Td there is a similar separation of two time scales controlled by the ratio
(T−Td)/Td . This allows the definition of dynamical quasi-states along lines similar to the ones
followed in the non-equilibrium case. The free energy obtained by considering the collection
of the quasi-states of appropriate energy, should be coherent with the direct computation
from the partition function. By an explicit computation that we sketch in the appendix,
we verified that in the sphericalp-spin model, up to second-order corrections inT − Td ,
the thermodynamic entropy coincides with the TAP internal entropy plus the configurational
entropy of the saddles.

4. Regression of fluctuations and the Onsager postulate

In order to discuss the behaviour of the response function we consider the set-up of ‘thermo-
remanent magnetization’ (TRM) experiment [1]. The system is allowed to age in a small field
h acting from timetw to timeu such thatC(u, tw)→ 0. At later timest > u one detects the
magnetizationM(t) = (1/N)

∑N
i=1 Si(t) = hχ(t, u)†. Our set-up differs slightly from the

one usually considered in the literature, in which the field acts directly from the quenching
time. We switch the field on at timetw because we find it conceptually clearer to discuss the
behaviour of the magnetization starting from a situation where the system is already in the
asymptotic regime. We notice that the response to any arbitrarily varying fieldh(t) can be
expressed as a linear superposition of TRM magnetizations.

In order to discuss the decay ofM(t) we will show that a generalization of the Onsager
postulate of normal regression of fluctuations applies to the dynamical off-equilibrium process
[18]. The principle, originally stated for equilibrium systems, concerns the behaviour of
macroscopic quantitiesand states that in the linear response regime one cannot distinguish the
regression of a spontaneous fluctuation of a certain quantity from the regression from the same
value when imposed through a constraint on the equilibrium measure. Onsager’s postulate
means that for a large system, a spontaneous fluctuation must have the characteristic of the
most probablefluctuations and therefore corresponds to constrained minimization of the free
energy. This is equivalent to free-energy minimization in a conjugated field, thus leading to
an immediate derivation of the fluctuation–dissipation theorem.

The argument can be phrased in greater detail as follows [18]. Consider a thermodynamic
system in equilibrium and a given macroscopic (extensive) quantityα which takes the value
zero at equilibrium. Letγ be the corresponding conjugate intensive variable. Suppose that
at time zero the quantityα has a small but extensive spontaneous fluctuationα0. This will
occur with exponentially small probability, but when it occurs the subsequent evolution ofα(t)

will be independent of the thermal noise, i.e.α(t) = E(α(t)|α0), where we have denoted by
E(·|α0) the conditional expectation over the trajectories for fixedα0 at time zero. Asα0 is
small, we can write

α(t) = E(α(t)|α0) = A(t)α0. (20)

Denoting byEα0(·) the average over the distribution ofα0, andCα(t) = E(α(t)α(0)) the
correlation function, it follows thatA(t) = Cα(t)/Eα0(α

2
0). Note that the typical values ofα0

entering in the correlation function are of the order of
√
N , while in relation (20) we consider

values of orderN . The validity of the above analysis relies on the smoothness of the probability

† It should be kept in mind thatM(t) denotes the magnetization at timet but can depend on botht andu.
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distribution ofα0 in the crossover region, an assumption which is at the heart of linear response
theory.

As one is conditioning (20) by the value ofα0 only, then the overwhelming majority of the
configurationsC giving rise to the fluctuation are the ones ‘typical’ of the restricted canonical
distribution

e−βH(C)δ(α(C)− α0)∫
dC e−βH(C)δ(α(C)− α0)

(21)

which is equivalent to

e−β(H(C)−γα(C))∫
dC e−β(H(C)−γα(C))

(22)

in which γ is fixed by〈α〉γ = α0. Since to linear order inγ we have〈α〉γ = βγ 〈α2〉γ=0, it
follows that the relaxation ofα(t) induced by the field is given by

α(t) = βγCα(t). (23)

which is the fluctuation–dissipation theorem in its integral form.
Here we would like to show how a generalized form of the regression principle holds

in ageing dynamics where the time-scale separation suggests that, besides the fluctuations of
the instantaneous magnetizationM(u), one should also consider possible fluctuations of the
running global magnetizationm(u), defined as

m(t) = 1

N

N∑
i=1

mi(t). (24)

We consider the conditional expectation value of the magnetization at timet

given small values of the instantaneous and running magnetizationsM(u) and m(u):
E(M(t)|M(u),m(u)). This can again be expanded to first order:

E(M(t)|M(u),m(u)) = A(t, u)[M(u)−m(u)] + B(t, u)m(u) (25)

and the functionsA andB can be fixed by a continuity hypothesis, leading to

E(M(t)|M(u),m(u)) =
[
Cst (t − u)
1− qEA [M(u)−m(u)] +

Cag(u/t)

qEA
m(u)

]
(26)

where we have used〈(M(u)−m(u))2〉 = (1− qEA)/N and〈m(u)2〉 = qEA/N .
Onsager’s argument demonstrates two things:

(a) that the decay of a spontaneous fluctuation with time is governed by the correlation
function; and

(b) that a fluctuation induced by a conjugate field will decay as a spontaneous fluctuation if
the probability distribution defining the state of the system immediately after the induced
field is turned off is equal to the unperturbed probability distribution projected on the
hypersurface defined by the equations

1

N

N∑
I=1

mi(u) = m(u) 1

N

N∑
I=1

Si(u) = M(u) (27)

where now,m(u) represents the value of an average as (9) for times immediatelyafter the
field is turned off.
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This second condition is consistent with our scenario of quasi-equilibrium in the dynamical
relaxation process. In the following sections we will deal with the problem of computing the
slow part of the magnetization induced by a field. We will first discuss the case of SK-like
models whose OTOs during the dynamical relaxation tend to the ground state values. Then
we will discuss those systems where the asymptotic state is different from the ground state.
In this case, the argument is further complicated by the extensive multiplicity of the threshold
states.

5. The case of SK-like models

We first recall that the equilibrium analysis of these models [19] in the ‘one-step replica
symmetry breaking’ approximation determines the multiplicity of states at low free energyF

[20] as

N (F ) dF = eβx(F−FGS) dF (28)

whereFGS is the ground state free energy andx is the Parisi parameter in this approximation.
We then quote from the dynamical solution the expression of the magnetization in the

TRM experiment described in the previous section:

M(t) = Cst (t − u)βh +Cag(u/t)βhx. (29)

The comparison of this with equation (26) tells us the following remarkable fact: the
action of an external fieldh from timetw to u produces atu a state of the system (in the sense
of a measure in the microscopic variables) which is identical to the one we can obtain through
infinite realizations of the thermal noise and selection of those trajectories with

M(u)−m(u) = βh(1− qEA)
m(u) = βhxqEA.

(30)

Therefore, thanks to the use of Onsager’s postulate it is enough to calculate the response
at timeu immediately after the magnetic field has been turned off. We have assumedtw andu
sufficiently large so that the system is in a quasi-state with free energyF slightly larger than
that of the ground state. Equations (30) separate the response to the magnetic field into two
components: (a) inside the same quasi-state the more probable configurations will change and
(b) the quasi-state will change. The response (a) is the equilibrium intrastate response and is
trivial. To isolate (b) we imagine turning off the magnetic field at timeu and then waiting a
finite time1t such thatC(1t)st is qEA, while1t/u is still zero. Then we know that the system
has gone from one quasi-state at timetw to another at timeu + 1t , both defined with zero
magnetic field. The distribution of (zero-magnetic-field) quasi-states with this free energy is
given by (28). Each of them may have a magnetization, uncorrelated from the free energy and
with variance〈m2〉 = qEA/N . The typical number of quasi-states with free-energy densityF

and magnetizationm is therefore given by

N (F,m) = eβx(F−FGS)e−Nm
2/2qEA (31)

implying that

S(F,m) = βx(F − FGS)− m2N

2qEA
> 0. (32)

We first note that if we sendu to infinity before sendingh to zero, i.e. we consider fields such
that the induced magnetizationm verifiesβx(Fu − FGS) � m2N/2qEA we can derive the
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result (30) in a quite straightforward way. In fact, we obtain that a non-zero magnetization
has to be compensated by an increase of free energy so as to keep the configurational entropy
S(F,m) non-negative

F − FGS = m2N

2qEAβx
. (33)

Along this line in the(F,m)-plane the state with lowest total free energyF − hmN has

F = FGS + 1
2βNh

2qEAx (34)

implyingm = βxhqEA.
The interpretation of this result is particularly illuminating. Turning on the magnetic field

is a way of making energy available to the system. The thermal bath would normally absorb
part of this energy. However, this is possible only if the entropy of the system decreases in the
process. This cannot happen here as by hypothesis the available entropy is much smaller than
that required to increasem. We conclude that the equilibration must occur only between the
magnetic free energyhmN and the unperturbed, zero magnetic fieldF .

With this argument in mind we can now understand the limit which is more relevant to
the dynamical approach. In this caseF(u) − FGS is extensive and large with respect to the
potential energy introduced by the external magnetic field. In this situation there is, formally,
enough entropy to allow the magnetization to reach the value of equilibrium with the thermal
bathm = βhqEA. However, with the same token one would argue that the thermal bath could
have absorbed that entropy to decrease the spin–spin interaction energy. We know that this is
not the case, or rather that entropy/heat is absorbed at a certain rate basically determined by
the barriers. The external force is uncorrelated to the direction of relaxation of the system, and
therefore it is reasonable to assume that the turning on of the magnetic fieldwill not modify
the rate of entropy decrease (heat transfer to the thermal bath). We conclude as before that
the equilibration must occur between the magnetic free energyhmN andF . In formulae if
we callFh(u), F (u) the free energy (associated with the inter-spins coupling) that the system
would reach in the presence of the magnetic field or in its absence at timeu, then

S(F h(u),m(u)) = S(F (u)) (35)

so that

βx(F h(u)− FGS)− m(u)
2N

2qEA
= βx(F (u)− FGS). (36)

The previous argument now follows minimizingFh(u)−Nhm(u).
We remark that both entropy reductions refer to the same degrees of freedom and therefore

respond on the same time scale. The result is that the thermal bath acts as if it was uncoupled,
while the two forms of (free) energy mutually equilibrate†. In other words, the transition time
to higher free-energy states is much smaller than the one required to go to equal or lower
free-energy states.

This argument is so crucial to our picture that we feel it necessary to try to confirm it with
a detailed model of the dynamical process.

† This represents an instance of the recent proposal that a system and a thermometer responding on the same time
scale will equalize their effective temperatures [10]. In fact, the inverse temperature of the magnetic field interaction
energy is dS/dEh = d(−m2/2qEA)/d(−mh) = m/(qAEh) = βx. However, our entropic interpretation suggests
that time scales will depend strongly onβx—the lower the effective temperature, the slower the evolution of the
system. If two different ageing systems starting with different effective temperatures and equal time scales are put
into contact, they will quickly develop different time scales before equilibrating.
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Let us imagine the dynamical trajectory from a (large) timeu to a time t such that
C(t, u) ≈ 0. We discretize the dynamics ink steps such thatu = t0 < t1 < · · · < tk = t

such thatC(ti+1, ti) = qEA − ε with ε small. At time ti the system will have free energy
Fi and Fi+1 − Fi will be small but extensive. The model we make of the dynamical
process consists of assuming that when going from timeti to time ti+1 the system can access
different quasi-states with the lower one at free energyFi+1 and the higher ones distributed
exponentially

N (F ) = eλ(F−Fi+1) (37)

while the probability of transition to a state with free energyF is proportional to

e−βF . (38)

The model is consistent forλ < β (otherwise the free energy would grow with time) and
incorporates the following two features.

(a) The decrease in extensive free energy is deterministic.
(b) If we fix the initial condition, the increase in entropy in a single step is finite†. In fact, this

can be calculated following the lines of [21] for the random energy model, with the result

1S = 0′(1)− 0
′(1− λ/β)
0(1− λ/β) . (39)

In k steps the entropy generated will bek1S and therefore negligible with respect to
Nm2/(2qEA). Although non-extensive,k1S can be arbitrarily large, thus explaining the
divergence of two cloned trajectories. In this model we have heavily used the self-averaging
character of the macroscopic quantities along the trajectories. It is again clear that the only way
to develop a magnetization is by compensating it with an increase in the (zero-magnetic-field)
free energy.

6. p-spin-like models

Forp-spin-like models even the limittw →∞ beforeh→ 0 is non-trivial. In fact, it is well
known that for this kind of system the properties of the quasi-states encountered in the dynamics
are closer and closer to these of the threshold TAP states, which have extensive configurational
entropySth. If this entropy were accessible in the dynamical process the equality (19) would
be valid withS∞ = Sth. The condition that the total configurational entropy at timeu should
be positive would then read

Sth + βx(Fu − Fth)− m2N

2qEA
> 0 (40)

which could be satisfied even ifFu − Fth is small and negligible in front of−m2N/2qEA. In
more physical terms we can say that among the eSth states there are eSth−m

2/2qEA states with
magnetizationm. If all of these states were available to a single trajectory the response would
be normal,m = βhqEA. If we want the response to be anomalous we must show that the
system, while wandering in phase space has no access to the configurational entropy‡.

† The entropy which we are talking about here corresponds to the dynamical probability in which the initial condition
is fixed, and is therefore increasing with time.
‡ A moment of reflection reveals that otherwise the system, wandering in such a large space, would pass to lower-lying
states and relax belowFth.
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The logarithm of the number of states in the vicinity of any given TAP state has been
computed by Cavagnaet al in [22] in the case of the sphericalp-spin model. Below threshold
all states are isolated; there are no states closer than a given distanceqEA−qmax, whereqmax is a
level-dependent overlap which tends toqEA at threshold. Right at the threshold, the logarithm
of the number of states as a function of the distance(qEA − q) is

N6(q) ∝ N(qEA − q)5. (41)

Let us again imagine a discretization of the dynamics in which at each step the system
can jump a distanceδ = (q − qEA). Then aftern steps the log of the number of accessible
states would be at most of the order ofnδ5†. On the other hand, the distance travelled will be
1 = n δ if all the steps are in the same direction and1 = √n δ if the steps are uncorrelated.
In both cases it is easy to see that if we take the limitδ→ 0 andn→∞ fixing1 we find that
log(N )/N goes to zero (nδ5→ 0).

Note that the argument is based on the scarcity of states in the vicinity of a given state.
This should be a generic feature forp-spin-like systems other then thep-spin model.

Having eliminated the configurational entropy from the balance, the argument proceeds
as in the case of SK-like models.

Let us conclude by pointing out that threshold states with a large magnetization (of order
βhqEA) do exist, but are non-critical in the presence of the field. Therefore, with probability
one such states would be isolated and unreachable.

7. Summary and conclusions

The main point of our analysis has been to give an explanation of the anomalous response
function. We have found the physical origin of the equality between the FDR and the
growth rate of the configurational entropy close to the asymptotic state. The value of the
anomalous response can be traced to the lack of available entropy when the system is close
to the low-lying states. Our interpretation clarifies the relation among equilibrium properties
and off-equilibrium dynamics. Forp-spin-like systems we have argued that the extensive
configurational entropy of the threshold states does not play any thermodynamical role. We
have seen that the classical Onsager argument on the equivalence between the regression of a
spontaneous, noise-caused, fluctuation of the magnetization and the one induced by an external
field can be generalized to ageing systems.

Our analysis can be summarized by saying that in ageing systems the rate of entropy
decrease is a function of age and does not change due to small forces. Thus the balance is
always between the value of the unperturbed free energy and that of the perturbation, without
taking into account the thermal bath. We expect this conclusion to also hold in short-range
systems with ageing.

In spin-glass materials, one-time observables equilibrate, and the picture we have
developed relates to the structure of configuration space close to the ground state. In ageing
experiment of structural glasses on the other hand, OTOs are far from their asymptotic values.
Still, one can observe quasi-scaling ageing dynamics on two-time observables. The structure
of the phase space visited on this time scale cannot be related to ‘true’ asymptotic properties
of the system. We would like to speculate that even here the fluctuation–dissipation ratio,
which could be a slowly varying function of time, is related to the derivative of the available

† This estimate could correspond to a severe double counting, as one can realize by applying the estimate to finite-
dimensional Brownian motion. In infinite-dimensional problems we expect it to give essentially the correct result.
However, in any case, we only need it as an upper bound in our argument.
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phase space with the free energy also varying along the dynamical path. This could be true
even if the system were to eventually reach equilibrium on a different time scale where FDT
is asymptotically obeyed.

Finally, the case of multiple time sectors or multiple replica symmetry breakings will need
trivial modifications.
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Appendix

The aim of this appendix is twofold. We first show that in the sphericalp-spin model the
derivative of the configurational entropy of the saddles is continuous at the threshold. Then,
we prove that aboveTd the paramagnetic state can be seen, to first order inT −Td as a collection
of quasi-states identifiable with the points of least gradient of the TAP free energy.

Let us start from the expression of the TAP free energy for the sphericalp-spin model
[23]

FTAP [mi = √qSi ] = E0q
p/2 − 1

4β(1− p(1− q), q−1+p − qp)− log(1− q)
2β

(A1)

whereE0 is the angular part of the energy as a function of the angular variablesSi . It is well
known that while one can find stationary points of the angular part for all the values ofE0 in
the range|E0| > −EGS . Conversely, at finite temperature one finds solutions for the radial
parts only in the range−Eth > |E0| > −EGS . The overwhelming majority of these solution
are free-energy minima.

The stationary points of the angular part for−Eth < |E0| turn out to be saddles, with a
number of unstable directions which depends onE0. The number of stationary points as a
function ofE0 is given by [24]

6(E0) = 1

2

[
2− p
p
− 2

p2z2
+
(−1 +p)z2

2
− log( 1

2pz
2)

]
(A2)

wherez is an auxiliary variable given by

− E0

−1 +p
−
√
E2

0 − E2
th

−1 +p
. (A3)

For the saddlesE0 > Eth = −(
√

2
√
(−1 +p)/p) the formula becomes complex. This is due

to the fact that the Hessian which appears in the computation [24] has negative eigenvalues
and one has to compute the absolute value of its determinant. As suggested in [22] this can be
done by just taking the real part of expression (A2), which gives the parabolic shape

6(|E0| < −Eth) = −E2
0
(p − 2)

2(p − 1)
+

1

2
log(p − 1). (A4)

An explicit computation using this formula shows that theE0-derivative of (A2) and (A4) is
continuous at the threshold energy.
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Let us now pass to our second task. We would like to identify the quasi-states close to
threshold as points of minima of the TAP gradient. Unfortunately, we were not able to prove
this directly in the ageing regime at low temperature, for we do not know how to compute
the dynamical entropy. We start then from the observation that for temperatures higher,
but close toTd one observes a slowing down of the dynamics with time-scale separation
which becomes sharper and sharper asT → Td . So we can define dynamic quasi-states
even aboveTc, where the role of a small but finiteT − Td is similar to the role of a
finite tw in the low-temperature dynamics. We put these quasi-states in relation with the
TAP free energy, supposing that they coincide with the points of least TAP gradient for
fixed internal energy equal to the paramagnetic value−β/2. These are saddle points of
the angular part, while the radial part is an inflection point, i.e. we fixq in the value of
the minimum of dFTAP /dq. By explicit computation from (A1) and (A4) we find that the
total free energyFTAP − T6(E0) is equal to the paramagnetic free energy−β/4 up to
terms which are of the second order inT − Td . For instance, forp = 3 one finds that
FTAP − T6(E0) = −β/4− 8

√
2/3(T − Td)2.
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